Abstract

Hydrogen can be considered a clean energy carrier with zero carbon emissions, produced from renewable energy sources. However, hydrogen is a highly flammable gas and can form explosive mixtures with oxygen; hence, sensing techniques are essential for timely leak detection. This paper presents the experimental characterization of a hydrogen sensor based on sensing material consisting of thermally exfoliated/reduced graphene oxide (rGO) films deposited on a sensor device by the drop-coating technique. The measurement of changes in electrical resistance due to hydrogen gas exposure operating at different temperatures (27°C, 90°C, and 150°C) is carried out in a gas chamber with a known concentration of hydrogen in constant air flow. In addition, a generalized mathematical formulation is provided for the dependence of hydrogen gas concentration, temperature, and sensor resistance for the hydrogen gas sensor based on exfoliated/reduced graphene oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.