Abstract

In this paper, we restrict our attention to sidewinding locomotion and present detailed kinematics and dynamics of a 3-D multi-link snake robot. To obtain kinematics of three-dimensional snake-like robot modeling, first, a virtual structure with an additional six degrees of freedom is attached to the tail of the robot. Denavit–Hartenberg method is next employed to derive the kinematics relationships. A spring and damper model is used to realistically model contacts between ground and the robot. Gibbs–Appell’s method is next utilized to obtain the 3-D robot dynamics. To validate the dynamics equations, SimMechanic software is used. Finally, a 3-D snake robot, referred to as FUM-Snake 5, is constructed and utilized to experimentally show the sidewinding locomotion. The theoretical derived equation in this study can also be used to generate both other 2-D and 3-D snake robot locomotions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.