Abstract

This paper presents an analytical model to calculate decrease of kinetic energy and residual velocity of projectile penetrating targets composed of multi-layered planar plain-woven fabrics. Based on the energy conservation law, the absorbed kinetic energy of projectile equals to kinetic energy and strain energy of planar fabric in impact-deformed region if deformation of projectile and heat generated by interaction between projectile and target are neglected. Then the decrease of kinetic energy and residual velocity of projectile after the projectile perforating multi-layered planar fabric targets could be calculated. Owing to fibers in fabric are under a high strain rate state when fabric targets being perforated by a high velocity projectile, the mechanical properties of the two kinds of fibers, Twaron® and Kuralon®, respectively, at strain rate from 1.0×10−2 to 1.5×103 s−1, are used to calculate the residual velocity of projectile. It is shown that the mechanical properties of fibers at high strain rate should be adopted in modeling rate-sensitivity materials. Prediction of the residual velocities and energy absorbed by the multi-layered planar fabrics show good agreement with experimental data. Compared with other models on the same subject, the perforating time in this model can be estimated from the time during which certain strain at a given strain rate is generated. This method of time estimation is feasible in pure theoretical modeling when the perforation time cannot be obtained from experiments or related empirical equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.