Abstract

Double-clamped bistable buckled beams demonstrate great versatility in various fields such as robotics, energy harvesting, and microelectromechanical system (MEMS). However, their design often requires time-consuming and expensive computations. In this work, we present a method to easily and rapidly design bistable buckled beams subjected to a transverse point force. Based on the Euler–Bernoulli beam theory, we establish a theoretical model of bistable buckled beams to characterize their snapthrough properties. This model is verified against the results from a finite element analysis (FEA) model, with maximum discrepancy less than 7%. By analyzing and simplifying our theoretical model, we derive explicit analytical expressions for critical behavioral values on the force-displacement curve of the beam. These behavioral values include critical force, critical displacement, and travel, which are generally sufficient for characterizing the snap-through properties of a bistable buckled beam. Based on these analytical formulas, we investigate the influence of a bistable buckled beam's key design parameters, including its actuation position and precompression, on its critical behavioral values, with our results validated by FEA simulations. Our analytical method enables fast and computationally inexpensive design of bistable buckled beams and can guide the design of complicated systems that incorporate bistable mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call