Abstract

A nonlinear analytical model for the transverse vibration of cracked magneto-electro-elastic (MEE) thin plate is presented using the classical plate theory (CPT). The MEE plate material selected is fiber-reinforced $$\hbox {BaTiO}_{3}$$ – $$\hbox {CoFe}_{2}\hbox {O}_{4}$$ composite, which contains a partial crack at the center. The CPT and the simplified line spring model for crack terms are modified to accommodate the effect of electric and magnetic field rigidities. The analysis considers in-plane forces for the MEE plate, which makes the model nonlinear. The derived governing equation is solved by expressing the transverse displacement in terms of modal coordinates. An approximate solution for forced vibration of cracked MEE plate is also obtained using a perturbation technique. The effect of part-through crack, volume fraction of the composite on the vibration frequencies and structure response is investigated. The frequency response curves presented shows the phenomenon of hard or soft spring. Furthermore, the devised model is extended to the case of cracked MEE plate submerged in fluid. Velocity potential function and Bernoulli’s equation are used to incorporate the inertia effect of surrounding fluid. Both partially and totally submerged plate configurations are considered. The validation of the present results is carried out for intact submerged plate as to the best of the author’s knowledge the literature lacks in results for submerged-cracked plates. New results for cracked MEE plate show that the vibration characteristics are affected by volume fraction, crack length, fluid level and depth of immersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.