Abstract

The purpose of this study is to formulate an Analytical model of equispaced energy levels quantum wells (QWs) in semiconductor ternary alloys (A x B 1 -x C). The procedure is by mapping the envelop function Schrodinger equation for realistic QW, with the local conduction band edge as the potential experienced by an electron in the QW into an effective mass Schrodinger equation with a linear harmonic oscillator potential by the method of coordinate transformation. The electron effective mass and potential are then obtained as the signature for the equispaced energy level for QWs in semiconductor ternary alloys. Keywords: Semiconductor nanostructures, Ternary alloys, Quantum wells, Equispaced energy levels, Effective mass

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.