Abstract

In this study, analytical modeling of the tensile strength of hot-mix asphalt (HMA) mixtures at low temperatures was developed. To do this, HMA mixtures were treated as a two-phase composite material with aggregates (coarse and fine) dispersed in an asphalt mastic matrix. A two-phase composite model, which was similar to Papanicolaou and Bakos's [J. Reinforced Plast. Compos. 11 (1992) 104] model with a particle embedded in an infinite matrix, was proposed. Unlike Papanicolaou and Bakos's model, an axial stress was introduced to the fiber end to consider the load transferred from the asphalt mastic the aggregate. Efforts were also made to consider the effect of aggregate gradation, asphalt mastic degradation, and interfacial damage between the aggregates and asphalt mastic matrix on the tensile strength of the HMA mixtures. Experimental investigations were conducted to validate the developed theoretical relations. A reasonable agreement was found between the predicted tensile strength and the experimental results at low temperatures. Parameters affecting the tensile strength of asphalt mixtures were discussed based on the calculated results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call