Abstract
The paper deals with the mathematical modeling of response amplitude operator (RAO) and frequency-based analysis for coupled roll and yaw motions in regular waves. Prior to obtaining the RAO expressions for linearly coupled conditions, hydrodynamic coefficients are computed by using the strip theory formulation. We consider sinusoidal wave with frequency (ω) varying between 0.3 rad/s and 1.2 rad/s acts on beam to the floating body for zero forward speed. Two limiting cases corresponding to ω → 0 and ω → ∞ are considered and general expressions of RAO for intermediate frequencies are derived. Analytical result shows that the norm of RAO is maximum when ω ≈ ωn≈ 0.74 for coupled roll and yaw motions. The asymptotic convergence of real part, imaginary part and norm of uncoupled yaw transfer functions are noticed with the increase of wave frequency. Using the normalization procedure and frequency based analysis; group based equations are formulated for each case. To understand the relative importance of the hydrodynamic coefficients, analytical solutions are obtained. The sensitivity analysis with respect to the initial conditions is investigated for roll and yaw motions. This study could be useful to model the floating body dynamics and corresponding wave loads in the design stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.