Abstract
This review utilizes an optimized Rouse-Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These generalized theories were used to assess the conformational and dynamical behavior of the dendrimers. By including stiffness in the bonds, the neglect of excluded volume interactions may be somewhat offset. This is true at least in the case of short spacers. While the topological limitations on the directions and orientations of the individual bond vectors in dendrimers implement semiflexibility, the intensity of these contacts was determined by the potential geometric orientations of the bonds, and later on the excluded volume interactions in dendrimers, which were described in terms of the effective co-volume between nearest non-bonded monomers and modeled using the delta function pseudopotential. With the aid of the models developed, the authors condensed various conformational and dynamic properties of dendrimers that depend on their degree of semiflexibility and the strength of the excluded volume. These analyses came to the conclusion that the flexible dendrimer in one limit and the earlier described freely rotating model of dendrimers in the other constitute a highly generalized way of capturing a wide range of conformations in the developed mathematical model in dendrimers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.