Abstract

An analytical model is presented, which uses two-dimensional field theory in polar coordinates to determine the flux density distribution, cogging torque, back EMF and electromagnetic torque in the slotted air gap of permanent-magnet motors with surface mounted magnet bars which are magnetized in shifting direction. The magnet arc to pole pitch ratio in the motor is not necessarily equal to unity like in the case of Halbach array magnetization. The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance. With this complex permeance, the radial and tangential components of flux density are calculated. In the analytical and numerical study a finite number of magnet bars, which is considered sufficient to get a sinusoidal magnetization, is used. The influence of the number of magnet bars on magnetization is also investigated. The accuracy of the developed model is verified by comparing its results with those obtained from experimental measurement and previously validated linear and nonlinear numerical finite element code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call