Abstract

In recent years, optical systems near the diffraction limit have been widely used in high-end applications. Evidently, an analytical solution of the point spread function (PSF) will help to enhance both understanding and dealing with the imaging process. This paper analyzes the Fresnel diffraction of diffraction-limited optical systems in defocused conditions. For this work, an analytical solution of the defocused PSF was obtained using the series expansion of the confluent hypergeometric functions. The analytical expression of the defocused optical transfer function is also presented herein for comparison with the PSF. Additionally, some characteristic parameters for the PSF are provided, such as the equivalent bandwidth and the Strehl ratio. Comparing the PSF obtained using the fast Fourier transform algorithm of an optical system with known, detailed parameters to the analytical solution derived in this paper using only the typical parameters, the root mean square errors of the two methods were found to be less than 3% in the weak and medium defocus range. The attractive advantages of the universal model, which is independent of design details, objective types, and applications, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call