Abstract

Multiphase (more than three) electric machines and drives were used first to limit current amplitude and later reduce torque ripple with early, six-step converters. More recently, the potential benefits of multiphase drives for electric ship propulsion include improved fault tolerance, improved torque density by harmonic injecting, reduced per-phase power rating, reduced ripple torque, reduced rotor loss, and reduced noise. Since the mid 1990s, R&D effort in the area of multiphase machines and drives has accelerated for new aerospace, electric vehicles, and renewable energy applications, especially off-shore wind because of reliability and size. Among the many multiphase options, N×3-phase systems can be split from existing 3-phase windings and still use conventional 3-phase inverters. This paper provides the analytical synchronous-frame d-q model of the 2×3-phase permanent magnet synchronous machine (PMSM), similar to the conventional three phase d-q model, for the purpose of control development. The developed model is verified with FEA simulation results. This paper also presents how to calculate and scale the parameters of the 2×3-phase PMSM from the baseline 3-phase PMSM. Motor drive engineers seeking the same level of 2×3-phase and 3×3-phase PMSM model as the conventional 3-phase PMSM for control research and development can benefit from this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.