Abstract

The triple-gate (TG) SOI FinFET has well suppressed short-channel effects compared to planar MOSFET due to increased gate voltage controllability. However, the hot carrier injection (HCI) is a serious reliability issue for nanoscale FinFET and this should be taken care for reliable circuit design. The introduction of uniaxial strain in the channel of FinFET to enhance the performance further limits the reliable design of VLSI circuits. Hence, there is a great need to capture these device-level variations in circuits through physics-based models. In this paper, one such analytical model of hot carrier (HC) degradation in uniaxial strained TG FinFET based on reaction–diffusion mechanism is developed, considering various geometrical aspects of the device, for the first time. The developed model is validated using experimentally calibrated Sentaurus TCAD simulation results. The results show that the strain in the channel worsens the degradation of threshold voltage due to HCI. The developed model is integrated in Cadence circuit simulator, and the impact of HC degradation in strained TG FinFET-based CMOS NAND logic circuit is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call