Abstract

We present a model of the human cornea in order to study the changes in its shape resulting from surgical operations (e.g., radial keratotomy). A simple closed-form solution is given for a thin linearly elastic spherical shell model of the cornea. We assume axisymmetry and isotropy in the shell surface. The surgery is modeled by permitting Young's modulus and shell thickness to depend on position. The analytical nature of the solution permits principal shell curvatures to be explicitly calculated. The model is used to investigate the effect of surgery on corneal flattening and the associated sensitivity to intraocular pressure changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.