Abstract

In recent years, the Shunbei karst-carbonate reservoirs becomes a huge productivity oilfield, which produced over one million tonnes crude oil annually. However, there are difficulties in understanding production contribution of each fault-karst branch in reservoirs, which significantly impacts the efficient development. Multibranched fault-karst reservoirs in the Shunbei have an obvious tree-shaped geostructure, in which the natural fractures and eroded cave develop along multiple large-scale faults. The existing models for pressure transient analysis (PTA) were mainly established for fracture-cave reservoirs only with single fault, which cannot be applicable to characterize the multibranched fault-karst reservoir. To fill this gap, a novel analytical PTA model for horizontal commingled production well in the multibranched fault-karst reservoir was established to describe pressure response and identify flow regimes. First, our model includes the Darcy flow with the fluid compressibility effect in fracture region, and the large-scale vertical storage flow in cave region as well as the horizontal laminar flow in the horizontal wellbore. Then, the accuracy of this PTA model is verified by comparing it with the existing single branch fault-karst pressure model. Further, we applied the model to analyze the Shunbei oilfield case data. Last, the effect of boundary type, fluid compressibility effect, fracture physical properties, and cave spatial distribution on the pressure response are discussed in detail. The sensitivity analysis results show (a) the cave storage flow regime exhibits an obvious unit-slope-line on pressure derivative curve, at the time the skin transient flow constitutes a V-shape characteristic. (b) The number of fracture-cave branches can be directly obtained by counting the number of V-shaped appearances on the pressure derivative curve. (c) The fluid compressibility effect leads to an upward trend on the pressure and its derivative, reservoir engineers should be cautious to explain that characteristic as a closed boundary effect. (d) The cave volume and cave position control the timing of the V-shape occurring. As the cave volume increases, the linear flow regime lasts longer and the V-shaped feature becomes apparent. With the cave distance and cave depth increasing, the V-shape characteristic comes later. This work can provide technical support for accurate characterization of multibranched fault-karst reservoirs, and give a type curve analysis method for rapidly diagnosing the spatial location of each karst cavity by analyzing bottom-hole pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call