Abstract

Multi-fractured horizontal well (MFHW) technology is a key technology for developing unconventional reservoirs, which can generate a complex fracture network called a stimulated reservoir volume (SRV). Currently, there are many relative analytical models to describe the fluid seepage law, which are not suitable for volcanic reservoirs as of yet. The reasons are as follows: (1) due to the development of natural fractures, multi-scaled flow (matrix, natural fractures, SRV) should be considered to characterize MFHW flow in volcanic reservoirs; (2) non-Darcy flow and stress sensitivity should be considered simultaneously for seepage in volcanic reservoirs. Thus, this paper presents a novel MFHW analysis model of volcanic reservoirs that uses a multi-scale dual-porosity medium model and complex flow mechanisms. Laplace transformation, the Duhamel principle, the perturbation method and Stehfest numerical inversion are employed to solve the model to obtain dynamic pressure response curves. The results show that the pressure response curve can be divided into eight stages. Sensitivity analysis shows that the parameters of hydraulic fractures mainly affect the early flow stage. The parameters of the SRV region mainly affect the middle flow stage. The parameters of unreconstructed regions, non-Darcy flow and stress sensitivity mainly affect the late flow stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call