Abstract

This paper presents an exact solution of two-dimensional laminar flow through a finite length channel with one porous wall. It improves upon previous solutions by (1) satisfying the no-slip boundary condition at the channel dead end, (2) adding a turbulent term to the porous wall boundary condition, (3) allowing for arbitrary variable suction or injection across the porous wall, and (4) model validation against new cryogenic liquid hydrogen and oxygen experimental data. Of particular interest in the current work is the modeling of cryogenic propellant flow through a porous liquid acquisition device (LAD) screen and channel inside a propellant tank. First, a detailed review of the literature is presented for previously attempted solutions to channel flow with one porous wall. Next, the governing equations, boundary conditions, and model assumptions are used to derive the analytical flow solution and present general model results for pressure and velocity fields within the channel. Then, the model solution is compared with horizontal LAD channel flow data in liquid oxygen as well as vertical LAD channel flow data in an inverted outflow configuration in liquid hydrogen. Model results are used to update the static cryogenic bubble point pressure model with a dynamic bubble point term which factors in enhanced convection and cooling at the screen during propellant outflow. Convective heat transfer at the LAD screen during outflow is also quantified by comparing model and data. The new analytical flow solution with the dynamic bubble point model is shown to compare well with available cryogenic experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call