Abstract
An analytical model for the self-excited vibration of an overflow flexible weir as observed in the French demonstration fast breeder reactor, Super Phenix-1, is proposed. The instability condition was derived for the case in which the plate vibrates at the frequency of the downstream tank sloshing. In this analysis, the flexible plate weir is modeled as a simply supported-free-simply supported-clamped rectangular plate. Eigenfunction expansions were applied for analyzing both plate vibrations and the downstream tank sloshing. The effect of an overflow liquid is formulated based on the assumption that the momentum change due to the collision of an overflow liquid partly transmitted to the pressure rise on the free surface. As a result, the characteristic equation of the system yielding the theoretical stability boundary was obtained. The stability boundary thus derived agreed well with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.