Abstract

This paper analyzes the noise and vibration in permanent-magnet synchronous motors (PMSMs). Electromagnetic forces have been identified as the main cause of noise and vibration in these machines, rather than the torque ripple and cogging torque. A procedure for calculating the magnetic forces on the stator teeth based on the 2-D finite-element (FE) method is presented first. An analytical model is then developed to predict the radial displacement along the stator teeth. The displacement calculations from the analytical model are validated with structural finite-element analysis (FEA) and experimental data. Finally, the radial displacement is converted into sound power level. Four different PMSM topologies, suitable for the electric power steering application, are compared for their performances with regard to noise and vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.