Abstract

Suspension waterjet peening is an emerging technology for surface modification. Coverage is a key factor affecting the integrity of a modified material surface, however such an experimental method that can be utilized for precise control has not yet been established. To determine the numerical value of coverage after surface peening treatment, In this paper, a coverage analytical method was proposed and then verified by the results through experiments. Furthermore, to explore the impact of high coverage on surface integrity, a large-scale coverage peening modification was performed on 18CrNiMo7-6 carburized steel specimens using a specialized suspension waterjet equipment. The results indicate that coverage has a significant impact on roughness and compressive residual stress field, with the highest improvement on surface and their maximum values reaching 51.6% and 24.7%, respectively. It is shown that the fatigue performance of the specimens can be significantly enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call