Abstract

A new analytical model for organic contaminant transport through GMB/CCL (geomembrane and compacted clay liner) composite liner is developed, which can consider adsorption, diffusion and thermodiffusion processes and is applicable for typical bottom boundary conditions. The separation of variables method is adopted to derive the solution. The present model is first verified against experimental results and a numerical model. The influence of thermodiffusion on organic contaminant transport in composite liner is then investigated. Toluene is adopted as the representative organic contaminant. The results reveal that when the Soret coefficient ST is not less than 0.01 K−1, the effect of thermodiffusion should be taken into account on the contaminant transport in GMB/CCL composite liner in wet landfills. When the Soret coefficient ST is 0.03 K−1, the breakthrough time of a GMB + 0.75 m CCL composite liner and a 2 m CCL would be overestimated by 20% to 76% due to omitting of the effect of thermodiffusion. Namely, the barrier performance would be greatly overestimated if the effect of thermodiffusion is neglected in these cases. In other aspects, the thermal conductivity of GMB and CCL has little effect on the contaminants transport in GMB/CCL composite liners, so there is no need to modify the materials for this parameter. The present model is an applicable tool for evaluating the barrier performance of the GMB/CCL composite liner, and can provide valuable advices for improving the liner materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.