Abstract
Non-thermal pressure in galaxy clusters leads to underestimation of the mass of galaxy clusters based on hydrostatic equilibrium with thermal gas pressure. This occurs even for dynamically relaxed clusters that are used for calibrating the mass-observable scaling relations. We show that the analytical model for non-thermal pressure developed in Shi & Komatsu 2014 can correct for this so-called 'hydrostatic mass bias', if most of the non-thermal pressure comes from bulk and turbulent motions of gas in the intracluster medium. Our correction works for the sample average irrespective of the mass estimation method, or the dynamical state of the clusters. This makes it possible to correct for the bias in the hydrostatic mass estimates from X-ray surface brightness and the Sunyaev-Zel'dovich observations that will be available for clusters in a wide range of redshifts and dynamical states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.