Abstract

The most PCMs with high energy storage density have an unacceptably low heat conductivity and hence internal heat transfer enhancement techniques such as fins or other metal structures are required in latent heat thermal storage (LHTS) applications. Previous work has concentrated on numerical and experimental examination in determining the influence of the fins in melting phase change material. This paper presents a simplified analytical model based on a quasi-linear, transient, thin-fin equation which predicts the solid–liquid interface location and temperature distribution of the fin in the melting process with a constant imposed end-wall temperature. The analytical results are compared to the numerical results and they show good agreement. Due to the assumptions made in the model, the speed of the solid–liquid interface during the melting process is slightly too slow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.