Abstract

This paper discusses axi-symmetric flow during CO2 injection into a non-adiabatic reservoir accounting for Joule-Thomson cooling and steady-state heat exchange between the reservoir and the adjacent layers by Newton's law. An exact solution for this 1D problem is derived and a new method for model validation by comparison with quasi 2D analytical heat-conductivity solution is developed. The temperature profile obtained by the analytical solution shows a temperature decrease to a minimum value, followed by a sharp increase to initial reservoir temperature on the temperature front. The temperature distribution head of the front is determined by the initial reservoir temperature, while the solution behind the front is determined by the temperature of injected CO2. The analytical model exhibits stabilisation of the temperature profile and the cooled zone. The explicit formula for temperature distributions allows determining the maximum injection rate that avoids hydrate formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.