Abstract

AbstractIn the past, the analytical model developed for a radially divergent heat flow in an aquifer thermal energy storage (ATES) system considers only the process of either thermal conduction or thermal dispersion. In addition, the existing models commonly regarded the inner boundary at the injection well as the constant‐temperature condition, which does not meet the continuity condition of heat flux at the wellbore. We herein propose an analytical model for a realistic representation of heat flow in an ATES system by considering the effects of both thermal conduction and thermal dispersion in the heat transfer equation and a Robin‐type boundary condition at the injection well. The model consists of three heat flow equations depicting the temperature distributions in the confined aquifer and its underlying and overlying rocks. The Laplace transform method is applied to solve the proposed model. The solutions for the cases of dispersion‐ and conduction‐dominant flow fields are also developed and discussed. Comparisons between the present solutions with five existing solutions developed for similar heated water injection problems are made. A global sensitivity method is also performed to analyze the thermal response to the change in each of the aquifer parameters. Finally, our solution is validated through the comparison with the finite difference solution and observed data from an ATES experiment site in Mobile, Alabama.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.