Abstract

AbstractIn a deck-on-girder composite beam system, the deck and supporting girders work together to effectively provide loading capacity. This system has been widely used for bridges, buildings, and other structures. Effective flange width is typically used to reduce a three-dimensional behavior of the composite beam system to the analysis of a T-beam section with a reduced width of deck. Current studies, including AASHTO specifications, are mainly focused on concrete decks with full-composite action. This paper presents a closed-form solution to study the composite beam system, which considers different degrees of composite action (DCAs) between the deck and supporting girders and can be applied to decks with orthotropic materials. The analytical model is verified through close correlations among test, finite-element, and analytical results for two T-beams with concrete and fiber-reinforced polymer (FRP) decks, in terms of both deflections and stress distributions. A parametric study is then conducted by...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.