Abstract

In this paper, a general analytical model is proposed to consider the thickness of backplate of axial flux permanent magnet (AFPM) machine with Halbach arrays. Firstly, the machine is represented in a 3-region model, viz, rotor iron, PM and airgap region, then, the slotless flux density is developed by Maxwell's equations. Second, the Schwarz-Christoffel (SC) mapping technique is introduced to consider the slot effect. Moreover, a simple magnetic equivalent circuit is introduced to calculated the magnetic permeability of rotor iron. The results show that the analytical predictions agree well with the finite element (FE) results, also, the model is verified via the performance of experimental results. The main contribution of this model is that the rotor iron part is taken into consideration, which is more accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.