Abstract

We propose a new analytical model for a superelastic shape memory alloy prismatic cantilever beam subjected to a concentrated force at the tip. The force is gradually increased and then removed and the corresponding distribution of phase transformation fields in the beam is determined, analytically, in both the transverse and longitudinal directions. Analytical moment–curvature and shear force–shear strain relations are also derived during loading and unloading of the beam. The proposed model is validated against an exact numerical beam model as well as a three-dimensional finite element analysis model for the same beam, with very good agreement in each case. Moreover, an experiment is proposed and carried out to characterize the load–deflection response of a shape memory alloy beam under the same boundary conditions as those considered in deriving the model. The obtained response is in good agreement with the analytical model as well as three-dimensional finite element analysis simulations. The analytical method provides a direct mathematical way for describing the material and structural properties of the beam and the distribution of the different solid phase regions as they change under the influence of an applied load and allows the determination of details such as the boundaries of solid phase regions immediately and accurately using equations. The same would require postprocessing at possibly significant computational cost and personal effort if finite element analysis or similar numerical methods are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.