Abstract

This study proposes a combination of kinematics-based design method, statistic method, and TLBO algorithm to solve computing optimization for a compliant gripper. It is employed in an assembly system of mini direct current motor. First, the kinematic models of the gripper are developed. The static model is paid attention. Next, the dynamic model is established based on Lagrange's principle. Then, a multi-criteria optimization for the gripper is conducted by Taguchi method integrated with TLBO algorithm. Finally, the FEA and experiments are implemented to verify the optimal results and evaluate the performances of the compliant gripper. The results indicated that theoretical models are in good accord with the results from simulations and experiments. Additionally, the performance of the present method is superior to PSO algorithm. The results revealed that the compliant gripper allows a displacement up to 3000 µm and the amplification ratio of 12 times. The compliant gripper is a potential application for the mini direct-current motor assembly system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.