Abstract

Small-geometry buried-channel depletion MOSFETs (BCD-MOSFETs) are characterized based on an analytical model that includes short-channel, narrow-channel, and carrier-velocity saturation effects. The drain current is calculated based on the surface electrons induced by the gate-bias voltage and the buried-channel junction FET. The narrow-channel effect is modeled not only by the additional depletion-layer charges created by a fringing-field effect in the field region, but also by the effective channel width as a function of gate-bias voltage. Surface-electron mobility is modeled as a function of the vertical and lateral electrical fields created by the gate-bias and drain voltages, while bulk-electron mobility is described as a function of the lateral electric field due to the drain voltage. Theoretical results on drain current are in good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.