Abstract

Given increased interest by all stakeholders to better understand the contribution of animal agriculture to climate change, it is important that appropriate methodologies be used when measuring greenhouse gas (GHG) emissions from animal agriculture. Similarly, a fundamental understanding of the differences between methods is necessary to appropriately compare data collected using different approaches and design meaningful experiments. Sources of carbon dioxide, methane, and nitrous oxide emissions in animal production systems includes the animals, feed storage areas, manure deposition and storage areas, and feed and forage production fields. These 3 gases make up the primary GHG emissions from animal feeding operations. Each of the different GHG may be more or less prominent from each emitting source. Similarly, the species dictates the importance of methane emissions from the animals themselves. Measures of GHG flux from animals are often made using respiration chambers, head boxes, tracer gas techniques, or in vitro gas production techniques. In some cases, a combination of techniques are used (i.e., head boxes in combination with tracer gas). The prominent methods for measuring GHG emissions from housing include the use of tracer gas techniques or direct or indirect ventilation measures coupled with concentration measures of gases of interest. Methods for collecting and measuring GHG emissions from manure storage and/or production lots include the use of downwind measures, often using photoacoustic or open path Fourier transform infrared spectroscopy, combined with modeling techniques or the use of static chambers or flux hood methods. Similar methods can be deployed for determining GHG emissions from fields. Each method identified has its own benefits and challenges to use for the stated application. Considerations for use include intended goal, equipment investment and maintenance, frequency and duration of sampling needed to achieve desired representativeness of emissions over time, accuracy and precision of the method, and environmental influences on the method. In the absence of a perfect method for all situations, full knowledge of the advantages and disadvantages of each method is extremely important during the development of the experimental design and interpretation of results. The selection of the suitable technique depends on the animal production system, resource availability, and objective for measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.