Abstract

BackgroundHealthcare, as with other sectors, has undergone progressive digitalization, generating an ever-increasing wealth of data that enables research and the analysis of patient movement. This can help to evaluate treatment processes and outcomes, and in turn improve the quality of care. This scoping review provides an overview of the algorithms and methods that have been used to identify care pathways from healthcare utilization data.MethodThis review was conducted according to the methodology of the Joanna Briggs Institute and the Preferred Reporting Items for Systematic Reviews Extension for Scoping Reviews (PRISMA-ScR) Checklist. The PubMed, Web of Science, Scopus, and EconLit databases were searched and studies published in English between 2000 and 2021 considered. The search strategy used keywords divided into three categories: the method of data analysis, the requirement profile for the data, and the intended presentation of results. Criteria for inclusion were that health data were analyzed, the methodology used was described and that the chronology of care events was considered. In a two-stage review process, records were reviewed by two researchers independently for inclusion. Results were synthesized narratively.ResultsThe literature search yielded 2,865 entries; 51 studies met the inclusion criteria. Health data from different countries (n=12) and of different types of disease (n=26) were analyzed with respect to different care events. Applied methods can be divided into those identifying subsequences of care and those describing full care trajectories. Variants of pattern mining or Markov models were mostly used to extract subsequences, with clustering often applied to find care trajectories. Statistical algorithms such as rule mining, probability-based machine learning algorithms or a combination of methods were also applied. Clustering methods were sometimes used for data preparation or result compression. Further characteristics of the included studies are presented.ConclusionVarious data mining methods are already being applied to gain insight from health data. The great heterogeneity of the methods used shows the need for a scoping review. We performed a narrative review and found that clustering methods currently dominate the literature for identifying complete care trajectories, while variants of pattern mining dominate for identifying subsequences of limited length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.