Abstract

Metabolomics is a young field of knowledge that arises linked to other omics such as genomics, transcriptomics, and proteomics. This discipline seeks to understand the performance of metabolites, identifying, quantifying them, and thus understanding its mechanism of action. This new branch of omics science shows high potential, due to its noninvasive character and its close relation with phenotype. Several techniques have been developed to study the metabolome of biological samples, fundamentally nuclear magnetic resonance (NMR), mass spectrometry (MS) and vibrational spectrometry (VS) or a combination of several techniques. These techniques are focused to separate, detect, characterize, and quantify metabolites, as well as elucidate their structures and their function on the metabolic pathways they are involved. However, due to the complexity of the metabolome, in most cases it is necessary to apply several of these techniques to understand completely the whole scenery. This review is aimed to offer a summary of the current knowledge of these analytical techniques for metabolomics and their application to different fields as environmental, food or health sciences. Each technique shows different advantages and drawbacks depending on their technical characteristics and limitations, some factors, such as the aim of the study or the nature of the biological sample will condition the choice. Regarding their applications, NMR has been employed specially to identify new compounds and elucidate structures. The use of MS has gained popularity because of its versatility, easiness to be coupled to separation techniques and its high sensitivity. Whereas VS is widely employed for in situ studies, due to its nondestructive character. Metabolomics applications in different science fields are growing each year, due to advances in analytical techniques and combination with other omics that allow to increase the comprehension of metabolic processes. Further development of analytical tools is necessary to continue exploiting all the possibilities of metabolomics. Highlights Metabolomics seeks to understand the performance of metabolites and its mechanism of action Different metabolomics techniques have been developed and improved in the last years Metabolomics applications cover clinical, pharmaceuticals and food and environmental sciences This review is aimed to offer a summary of the current knowledge of these analytical techniques

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.