Abstract
An updated version of the paper with revised references has been published The review part of the paper addresses analytical (mathematical) modeling in structural analysis in fiber optics engineering, mostly fiber optics interconnects, and deals with optical fibers subjected to thermal and/or mechanical loading (stresses) in bending, tension, compression, or to the combinations of such loadings. Attributes and significance of predictive modeling are indicated and discussed. The review is based mostly on the author’s research conducted at Bell Laboratories, Physical Sciences and Engineering Research Division, Murray Hill, NJ, USA, during his tenure with this company, and, to a lesser extent, on his recent work in the field. The addressed structures include, but are not limited to, optical fibers of finite length: bare fibers; jacketed and dual-coated fibers; fibers experiencing thermal loading; fibers soldered into ferrules or adhesively bonded into capillaries; as well as the roles of geometric and material non-linearity; dynamic response to shocks and vibrations; and possible applications of nano-materials in new generations of coating and cladding systems. The extension part is concerned with a novel, fruitful and challenging directionprobabilistic design for reliability (PDfR) of opto-electronic and photonic products, including optical fibers and interconnects. The rationale behind the PDfR concept is that there is no such thing as zero probability of failure, that the difference between a highly reliable product and an insufficiently reliable product is “merely” in the level of the never zero probability of its failure and that when the operational performance of the product is imperative, the ability to predict, quantify, assure and, if possible and appropriate, even specify its reliability is highly desirable. Accordingly, the objective of the PDfR effort is to quantify the likelihood of an operational failure of a material, device or a system, including the field of fiber optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.