Abstract

Percolation theory has become a useful tool for the analysis of large-scale wireless networks. We investigate the fundamental problem of characterizing the critical density λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(d)</sup> for d-dimensional Poisson random geometric graphs in continuum percolation theory. By using a probabilistic analysis which incorporates the clustering effect in random geometric graphs, we develop a new class of analytical lower bounds for the critical density λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(d)</sup> in d-dimensional Poisson random geometric graphs. The lower bounds are the tightest known to date. In particular, for the two-dimensional case, the analytical lower bound is improved to λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(2)</sup> ≥0.7698. For the three-dimensional case, we obtain λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(3)</sup> ≥0.4494.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call