Abstract

This article develops the analytical rigorous solution of a fundamental problem of heat conduction in anisotropic media. The steady-state temperature and heat flux fields in a thin-layer medium with anisotropic properties subjected to concentrated embedded heat sources or prescribed temperature on the surface are analyzed. A linear coordinate transformation is used to transform anisotropic thin-layer problems into equivalent isotropic problems without complicating the geometry and boundary conditions of the problem. By using the Fourier transform and the series expansion technique, exact closed-form solutions of the specific problems are presented in series forms. The complete solutions of heat conduction problems for the thin-layer medium consist only of the simplest solutions for an infinite homogeneous medium with concentrated heat sources. The numerical results of the temperature and heat flux distributions are provided in full-field configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.