Abstract

The transient heat conduction and thermal effects in pulse end-pumped fiber laser are modeled and analytically solved. For the arbitrary temporal shape of pump pulse, a three-dimensional (3D) temperature expression is derived via an integral transform method, and the thermal stress field is deduced through solving the Navier displacement equations. The results show that pulse shape has an important influence on the peak thermal stress and transient phase shift induced by heating of the fiber. Reasonable design for pulse duration and period can reduce thermal effects and optimize the performance of high-power fiber laser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call