Abstract
This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.