Abstract

In addition to fiber properties, the fabric structure plays an important role in determining ballistic performance of composite body armor textile. Textile structures used in ballistic protection are woven fabrics, unidirectional (UD) fabric structures, and nonwoven fabrics. In this article, an analytical model based on wave propagation and energy balance between the projectile and the target is developed to analyze hybrid fabric panels for ballistic protection. The hybrid panel consists of two types of structure: woven fabrics as the front layers and UD material as the rear layers. The model considers different cross sections of surface of the target in the woven and UD fabric of the hybrid panel. Also the model takes into account possible shear failure by using shear strength together with maximum tensile strain as the failure criteria. Reflections of deformation waves at interface between the layers and also the crimp of the yarn are modeled in the woven part of the hybrid panel. The results show greater efficiency of woven fibers in front layers (more shear resistance) and UD yarns in the rear layers (more tensile resistance), leading to better ballistic performance. Also modeling the yarn crimp results in more trauma at the backface of the panel producing data closer to the experimental results. It was found that there is an optimum ratio of woven to UD materials in the hybrid ballistic panel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.