Abstract

<abstract><p>This study delved into the dynamics of wave solutions within the Estevez-Mansfield-Clarkson equation in fractional nonlinear space-time. Utilizing conformable fractional derivatives, the equation governing shallow water phenomena and fluid dynamics was transformed into a nonlinear ordinary differential equation. Applying the Riccati Bernoulli sub-ODE approach yielded a finite series representation. Notably, our findings revealed novel solitary wave solutions characterized by kink, anti-kink, periodic, and shock functions. Visualized through 3D and contour graphs, kink and periodic waves emerged as distinct observable manifestations. Intriguingly, the diversity of results surpassed previous results, contributing to a deeper understanding of the intricate dynamics inherent in the system.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call