Abstract

A new numerical-based fragility relation for cast iron (CI) pipelines with lead-caulked joints subjected to seismic body-wave propagation is proposed in this article. Two-dimensional 1600-m-length finite element models for pipelines buried in sand are developed in OpenSees. Parametric analysis is performed to investigate the influence of various parameters on the damage estimates of the buried pipelines. Numerical analyses are conducted to estimate the repair rates ( RR) for CI pipelines subjected to wave propagation. The predictive model for RR is thus developed based on the numerical results and the Gaussian Process Regression approach. The model developed employs four predictor variables, namely, the peak particle velocity and wave propagation velocity along axial direction, the maximum soil shear force per unit length, and the outer diameter of pipelines, exhibiting desirable performance in terms of predictive efficiency and generalization. The performance of the developed relation is compared to several existing fragility relations. The new fragility relation can be used to estimate RR for CI pipelines with lead-caulked joints with outer diameters ranging from 169 to 1554 mm subjected to seismic body-wave propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.