Abstract

This study focuses on the development of analytical fragility curves for the ordinary highway bridges constructed after the 1990s. Four major bridge classes were employed based on skew angle, number of columns per bent, and span number (only multispan bridges). Nonlinear response-history analyses (NRHA) were conducted for each bridge sample using a detailed 3-D analytical model subjected to earthquake ground motions of varying seismic intensities. A component-based approach that uses several engineering demand parameters was employed to determine the seismic response of critical bridge components. Corresponding damage limit states were defined either in terms of member capacities or excessive bearing displacements. Lognormal fragility curves were obtained by curve fitting the point estimates of the probability of exceeding each specified damage limit state for each major bridge class. Bridges with larger skew angles or single-column bents were found to be the most seismically vulnerable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call