Abstract

Reliability is one of the most challenging problems in the context of three-dimensional network-on-chip (3D NoC) systems. Reliability analysis is prominent for early stages of the manufacturing process in order to prevent costly redesigns of a target system. This article classifies the potential physical faults of a baseline TSV-based 3D NoC architecture by targeting two-dimensional (2D) NoC components and their inter-die connections. In this paper, through-silicon via (TSV) issues, thermal concerns, and single event effect (SEE) are investigated and categorized, in order to propose evaluation metrics for inspecting the resiliency of 3D NoC designs. A reliability analysis for major source of faults is reported in this article separately based on their mean time to failure (MTTF). TSV failure probability induced by inductive and capacitive coupling is also discussed. Finally, the paper provides a formal reliability analysis on the aggregated faults that affect TSV. This formal analysis is critical for estimating the resiliency of different components in order to mitigate the redundancy cost of fault-tolerant design or to examine the efficiency of any proposed fault-tolerant methods for 3D NoC architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.