Abstract

AbstractBased on observations of Van Allen Probe‐A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L‐shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and WNA. From the analytical Bw models, we found MS wave amplitude Bw has a positive relation with the intensity of geomagnetic activities both inside and outside the plasmapause, while the Bw can reach higher values inside the plasmapause than it does outside the plasmapause as the kp index increases. The Bw distribution on the norF demonstrates that most of the wave energies are concentrated on the lower harmonics part, which results from the excitation mechanism of MS waves. In addition, the Bw distribution on the WNA shows that the waves with larger normal angles have higher values of wave amplitude. Our analytic MS wave model agrees with the observed distribution in 3‐D space of L, MLT, and λ well with high value of determine coefficient R2. The extended λ dimension will help us to calculate the more accurate bounced averaged diffusion coefficients during particles transit time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.