Abstract

The mathematical model of Abdekhodaie and Wu (J Membr Sci 335:21-31, 2009) of glucose-responsive composite membranes for closed-loop insulin delivery is discussed. The glucose composite membrane contains nanoparticles of an anionic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. The model involves the system of nonlinear steady-state reaction-diffusion equations. Analytical expressions for the concentration of glucose, oxygen and gluconic acid are derived from these equations using the Adomian decomposition method. A comparison of the analytical approximation and numerical simulation is also presented. An agreement between analytical expressions and numerical results is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.