Abstract

The effects of moderate-to-strong non-Kolmogorov turbulence on the angle of arrival (AOA) fluctuations for plane and spherical waves are investigated in detail both analytically and numerically. New analytical expressions for the variance of AOA fluctuations are derived for moderate-to-strong non-Kolmogorov turbulence. The new expressions cover a wider range of non-Kolmogorov turbulence strength and reduce correctly to previously published analytic expressions for the cases of plane and spherical wave propagation through both weak non-Kolmogorov turbulence and moderate-to-strong Kolmogorov turbulence cases. The final results indicate that, as turbulence strength becomes greater, the expressions developed with the Rytov theory deviate from those given in this work. This deviation becomes greater with stronger turbulence, up to moderate-to-strong turbulence strengths. Furthermore, general spectral power law has significant influence on the variance of AOA fluctuations in non-Kolmogorov turbulence. These results are useful for understanding the potential impact of deviations from the standard Kolmogorv spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call