Abstract

Most renewable energies are intermittent and require electricity storage systems to provide reliable, continuous power. Compressed Air Energy Storage (CAES) is one of the few economically viable potential solutions to store gigawatt-hours of electricity. Adiabatic-CAES (A-CAES) systems store the heat from compression and eliminate the need for injecting fuel before expansion. Literature generally agrees that cycle efficiency, i.e. the ratio of expansion and compression work, increases with compressor pressure ratio or discharge temperature, but a few publications show the opposite trend. This paper explicitly reformulates the cycle efficiency equation, now valid for single and multi-stage A-CAES systems, and clearly explains the impact of pressure ratio and temperature on efficiency. Explanations are given for contradicting trends that appear in literature, and the analytical expression is compared with a numerical model and external studies to evaluate its performance. A Latin hypercube sampling is performed and shows that the discrepancy between the analytical and numerical results lies between −4.1% and +1.0% over a large design space, showing that the simple analytical expression derived is a robust tool for preliminary sizing of A-CAES multi-stage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.