Abstract

The influence of turbulence on the settling velocity of small particles remains an inconclusive research subject. Both enhanced and retarded particle settling compared to quiescent settling have been reported in previous literature, and several theories have been proposed. Among the mechanisms that account for reduced settling velocities in turbulence, the loitering effect is an important one that generally exists in various conditions. This study focuses on an analytical prediction of reduced particle settling velocities due to the loitering effect. By considering the velocity autocorrelation function as a step function analogous to the free path theory, and using a modified integral time scale to capture the essence of the loitering effect, an analytical expression is derived for predicting the reduction in particle settling velocities in turbulent flows. Calculation results of the expression are then examined by comparing with the results of a random walk model, direct numerical simulations that conditionally captured the reduction of particle settling velocities due to the loitering effect, and several representative experiments. Major possible influencing factors on the prediction of the analytical expression and applicable conditions of the expression are then further discussed. The proposed analytical expression is shown to be suitable for predicting the reduced settling velocities of small particles with relatively weak inertia in turbulent flows and could provide a reasonable explanation for reported cases in which small to moderate reductions in particle settling velocities were observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call