Abstract
The widespread use of interdigital electrodes in such applications as microwave filters, surface acoustic wave devices, electro-optic shutters as well as on chemical and biological sensing and even on the electrical and dielectric characterization of materials requires that we improve our description of their electrical performance. In this paper, we present new analytical expressions for the capacitance between the two comb electrodes of a periodic interdigital capacitive sensor, based on conformal mapping techniques. This proposed model is general and quite independent of the particular application and can be applied for any space and finger width as well as for any number of layers with different thickness and permittivity. The capacitance for a particular sensor configuration is a function of the dielectric permittivity of the materials, the fingers length and of two geometric non-dimensional parameters: (i) the ratio between the space and finger widths; (ii) the ratio between the thickness of the sensitive layer and the spatial sensor wavelength. Comparisons with previously published models as well as with experimental data and finite element analysis were made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.