Abstract

Steel pipe pile walls are utilized for many projects in Japan. If the stiffness of the embedment ground is high, the cantilever type structure can be applied for high retaining wall using large diameter steel pipe piles with high flexural rigidity. In the design of large diameter pile wall, a conventional method used for small height flexible sheet pile walls is adopted. However, this method may not be rational to high retaining height large diameter steel pipe wall. A critical concern in the conventional method is requirement of minimum embedment depth. In this paper, the behavior of walls with large-diameter piles embedded into soft rock was studied using a beam-spring model analysis and FEM, targeting the wall embedment length as the main parameter. From the comparison with centrifuge model results, it was confirmed that the retaining wall behavior can be evaluated by the analytical models and the minimum embedment length requirement by the conventional method could be over-conservative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.